Abstract

BackgroundStudies have reported beneficial effects of exercise training on autoimmunity, and specifically on multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, it is unknown whether different training paradigms affect disease course via shared or separate mechanisms.ObjectiveTo compare the effects and mechanism of immune modulation of high intensity continuous training (HICT) versus high intensity interval training (HIIT) on systemic autoimmunity in EAE.MethodsWe used the proteolipid protein (PLP)‐induced transfer EAE model to examine training effects on the systemic autoimmune response. Healthy mice performed HICT or HIIT by running on a treadmill. Lymph‐node (LN)‐T cells from PLP‐immunized trained‐ versus sedentary donor mice were transferred to naïve recipients and EAE clinical and pathological severity were assessed. LN cells derived from donor trained and sedentary PLP‐immunized mice were analyzed in vitro for T‐cell activation and proliferation, immune cell profiling, and cytokine mRNA levels and cytokine secretion measurements.ResultsBoth HICT and HIIT attenuated the encephalitogenicity of PLP‐reactive T cells, as indicated by reduced EAE clinical severity and inflammation and tissue pathology in the central nervous system, following their transfer into recipient mice. HICT caused a marked inhibition of PLP‐induced T‐cell proliferation without affecting the T‐cell profile. In contrast, HIIT did not alter T‐cell proliferation, but rather inhibited polarization of T cells into T‐helper 1 and T‐helper 17 autoreactive populations.InterpretationHICT and HIIT attenuate systemic autoimmunity and T cell encephalitogenicity by distinct immunomodulatory mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.