Abstract

We derive a measurement-independent asymptotic continuity bound on the observational entropy for general positive operator valued measures measurements, making essential use of its property of bounded concavity. The same insight is used to obtain continuity bounds for other entropic quantities, including the measured relative entropy distance to a convex set of states under a general set of measurements. As a special case, we define and study conditional observational entropy, which is an observational entropy in one (measured) subsystem conditioned on the quantum state in another (unmeasured) subsystem. We also study continuity of relative entropy with respect to a jointly applied channel, finding that observational entropy is uniformly continuous as a function of the measurement. But we show by means of an example that this continuity under measurements cannot have the form of a concrete asymptotic bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.