Abstract

In this article, we use the so-called difference estimate method to investigate the continuity and random dynamics of the non-autonomous stochastic FitzHugh–Nagumo system with a general nonlinearity. Firstly, under weak assumptions on the noise coefficient, we prove the existence of a pullback attractor in L2(RN)×L2(RN) by using the tail estimate method and a certain compact embedding on bounded domains. Secondly, although the difference of the first component of solutions possesses at most p-times integrability where p is the growth exponent of the nonlinearity, we overcome the absence of higher-order integrability and establish the continuity of solutions in (Lp(RN)∩H1(RN))×L2(RN) with respect to the initial values belonging to L2(RN)×L2(RN). As an application of the result on the continuity, the existence of a pullback attractor in (Lp(RN)∩H1(RN))×L2(RN) is proved for arbitrary N≥1 and p>2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.