Abstract
In this paper we introduce the concept of a quasi-submersive mapping between two finite-dimensional spaces, we obtain the main properties of such mappings, and we introduce “normality conditions” under which a particular class of so-called “constrained mappings” are quasi-submersive at their zeros. Our main application is concerned with the continuation properties of normal doubly symmetric orbits in time-reversible systems with one or more first integrals. As examples we study the continuation of the figure-eight and the supereight choreographies in the N-body problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.