Abstract

We study the existence of discrete breathers (time-periodic and spatially localized oscillations) in a chain of coupled nonlinear oscillators modelling the breathing of DNA. We consider a modification of the Peyrard–Bishop model introduced by Peyrard et al. [Nonlinear analysis of the dynamics of DNA breathing, J. Biol. Phys. 35 (2009), 73–89], in which the reclosing of base pairs is hindered by an energy barrier. Using a new kind of continuation from infinity, we prove for weak couplings the existence of large amplitude and low frequency breathers oscillating around a localized equilibrium, for breather frequencies lying outside resonance zones. These results are completed by numerical continuation. For resonant frequencies (with one multiple belonging to the phonon band) we numerically obtain discrete breathers superposed on a small oscillatory tail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.