Abstract
This paper describes a new semi-supervised learning algorithm for intra-class clustering (ICC). ICC partitions each class into sub-classes in order to minimize overlap across clusters from different classes. This is achieved by allowing partitioning of a certain class to be assisted by data points from other classes in a context-dependent fashion. The result is that overlap across sub-classes (both within- and across class) is greatly reduced. ICC is particularly useful when combined with algorithms that assume that each class has a unimodal Gaussian distribution (e.g., Linear Discriminant Analysis (LDA), quadratic classifiers), an assumption that is not always true in many real-world situations. ICC can help partition non-Gaussian, multimodal distributions to overcome such a problem. In this sense, ICC works as a preprocessor. Experiments with our ICC algorithm on synthetic data sets and real-world data sets indicated that it can significantly improve the performance of LDA and quadratic classifiers. We expect our approach to be applicable to a broader class of pattern recognition problems where class-conditional densities are significantly non-Gaussian or multi-modal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.