Abstract
We generalize the subgradient optimization method for nondifferentiable convex programming to utilize conditional subgradients. Firstly, we derive the new method and establish its convergence by generalizing convergence results for traditional subgradient optimization. Secondly, we consider a particular choice of conditional subgradients, obtained by projections, which leads to an easily implementable modification of traditional subgradient optimization schemes. To evaluate the subgradient projection method we consider its use in three applications: uncapacitated facility location, two-person zero-sum matrix games, and multicommodity network flows. Computational experiments show that the subgradient projection method performs better than traditional subgradient optimization; in some cases the difference is considerable. These results suggest that our simply modification may improve subgradient optimization schemes significantly. This finding is important as such schemes are very popular, especially in the context of Lagrangean relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.