Abstract

The paper presents a stochastic approach to analyze instantaneous unavailability of standby safety equipment caused by latent failures. The problem of unavailability analysis is formulated as a stochastic alternating renewal process without any restrictions on the form of the probability distribution assigned to time to failure and repair duration. An integral equation for point unavailability is derived and numerically solved for a given maintenance policy. The paper also incorporates an age-based preventive maintenance policy with random repair time. In case of aging equipment, the asymptotic limit or average unavailability should be used with a caution, because it cannot model an increasing trend in unavailability as a result of increasing hazard rate (i.e. aging) of the time to failure distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.