Abstract
Automatic image annotation has been an active research topic due to its great importance in image retrieval and management. However, results of the state-of-the-art image annotation methods are often unsatisfactory. Despite continuous efforts in inventing new annotation algorithms, it would be advantageous to develop a dedicated approach that could refine imprecise annotations. In this paper, a novel approach to automatically refining the original annotations of images is proposed. For a query image, an existing image annotation method is first employed to obtain a set of candidate annotations. Then, the candidate annotations are re-ranked and only the top ones are reserved as the final annotations. By formulating the annotation refinement process as a Markov process and defining the candidate annotations as the states of a Markov chain, a content-based image annotation refinement (CIAR) algorithm is proposed to re-rank the candidate annotations. It leverages both corpus information and the content feature of a query image. Experimental results on a typical Corel dataset show not only the validity of the refinement, but also the superiority of the proposed algorithm over existing ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.