Abstract

Grouping images into (semantically) meaningful categories using low level visual features is a challenging and important problem in content based image retrieval. Using binary Bayesian classifiers, we attempt to capture high level concepts from low level image features under the constraint that the test image does belong to one of the classes of interest. Specifically, we consider the hierarchical classification of vacation images; at the highest level, images are classified into indoor/outdoor classes, outdoor images are further classified into city/landscape classes, and finally, a subset of landscape images is classified into sunset, forest, and mountain classes. We demonstrate that a small codebook (the optimal size of codebook is selected using a modified MDL criterion) extracted from a vector quantizer can be used to estimate the class-conditional densities of the observed features needed for the Bayesian methodology. On a database of 6931 vacation photographs, our system achieved an accuracy of 90.5% for indoor vs. outdoor classification, 95.3% for city vs. landscape classification, 96.6% for sunset vs. forest and mountain classification, and 95.5% for forest vs. mountain classification. We further develop a learning paradigm to incrementally train the classifiers as additional training samples become available and also show preliminary results for feature size reduction using clustering techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.