Abstract
Content enhancement of real-world environments is demonstrated through the combination of machine learning methods with augmented reality displays. Advances in machine learning methods and neural network architectures have facilitated fast and accurate object and image detection, recognition and classification, as well as providing machine translation, natural language processing and neural network approaches for environmental forecasting and prediction. These methods equip computers with a means of interpreting the natural environment. Augmented reality is the embedding of computer-generated assets within the real-world environment. Here I demonstrate, through the development of four sample mobile applications, how machine learning and augmented reality may be combined to create localised, context aware and user-centric environmental information delivery channels. The sample mobile applications demonstrate augmented reality content enhancement of static real-world objects to deliver additional environmental and contextual information, language translation to facilitate accessibility of forecast information and a location aware rain event augmented reality notification application that leverages a nowcasting neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Southern Hemisphere Earth Systems Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.