Abstract
Content-based image retrieval (CBIR) has been an active research topic in the last decade. Feature extraction and representation is one of the most important issues in the CBIR. In this paper, we propose a content-based image retrieval method based on an efficient integration of color and texture features. As its color features, pseudo-Zernike chromaticity distribution moments in opponent chromaticity space are used. As its texture features, rotation-invariant and scale-invariant image descriptor in steerable pyramid domain are adopted, which offers an efficient and flexible approximation of early processing in the human visual system. The integration of color and texture information provides a robust feature set for color image retrieval. Experimental results show that the proposed method yields higher retrieval accuracy than some conventional methods even though its feature vector dimension is not higher than those of the latter for different test DBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.