Abstract

Sediment oxidation by oxygen is ubiquitous, whereas the mechanisms of concurrent contaminant oxidation, particularly the temporal variation of chemical and biological oxidation, remain inadequately understood. This study investigated the oxidation of two contaminants (phenol and trichloroethylene) with different responses during the oxygenation of four natural sediments with different redox properties. Results showed that contaminant oxidation was initially dominated by hydroxyl radicals (•OH) (first stage), stabilized for different time for different sediments (second stage), and was re-started by microbial mechanism (third stage). In the first short stage, the contribution of chemical oxidation by •OH was mainly determined by the variation of sediment electron-donating capacity (EDC). In the second long stage, the stabilization time was dependent on sediment redox properties, that is, the abundance and growth of aerobic microbes capable of degrading the target contaminants. A more reduced sediment resulted in a higher extent of oxidation by •OH and a longer stabilization time. When the third stage of aerobic microbial oxidation was started, the contaminants like phenol that can be utilized by microbes can be oxidized quickly and completely, and those refractory contaminants like trichloroethylene remained unchanged. The study differentiates chemical and biological mechanisms for contaminant oxidation during sediment oxygenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.