Abstract

In recent years, radiative cooling has become a topic of considerable interest for applications in the context of thermal building management and energy saving. The idea to direct thermal radiation in a controlled way to achieve contactless sample cooling for laboratory applications, however, is scarcely explored. Here, we present an approach to obtain spatially structured radiative cooling. By using an elliptical mirror, we are able to enhance the view factor of radiative heat transfer between a room temperature substrate and a cold temperature landscape by a factor of 92. A temperature pattern and confined thermal gradients with a slope of ~ 0.2 °C/mm are created. The experimental applicability of this spatially structured cooling approach is demonstrated by contactless supercooling of hexadecane in a home-built microfluidic sample. This novel concept for structured cooling yields numerous applications in science and engineering as it provides a means of controlled temperature manipulation with minimal physical disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.