Abstract

The identification of energetic materials in containments is an important challenge for analytical methods in the field of safety and security. Opening a package without knowledge of its contents and the resulting hazards is highly involved with risks and should be avoided whenever possible. Therefore, preferable methods work non-destructive with minimal interaction and are capable of identifying target substances in a containment quickly and reliably. Most spectroscopic methods find their limits, if the target substance is shielded by a covering material. To solve this problem, a combined laser drilling method with subsequent identification of the target substance by means of Raman spectroscopic measurements through microscopic bore holes of the covering material is presented. A pulsed laser beam is used for both the drilling process and as an excitation source for Raman measurements in the same optical setup. Results show the ability of this new method to gain high-quality spectra even when performed through microscopic small bore channels. With the laser parameters chosen right, the method can even be performed on highly sensitive explosives like triacetone triperoxide (TATP). Another advantageous effect arises in an observed reduction in unwanted fluorescence signal in the spectral data, resulting from the confocal-like measurement setup with the bore hole acting as aperture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.