Abstract

Platinum (Pt)-incorporation into nickel silicide films is the promising approach to reduce the contact resistance (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> ) at silicide/Si interface. Physical properties of Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Pt <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> Si films were investigated by using local electrode atom probe (LEAP); The distributions of Pt and dopants (such as As and B) were analyzed both at silicide/Si interface and at silicide grain boundary. The silicide grain-size miniaturization was clearly observed by Pt-incorporation. The impacts of silicide grain size on electrical properties and thermal stability were clarified depending on the Pt concentration. Finally, R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> reduction depending on the incorporated-Pt concentration was experimentally shown in both nMOSFETs and pMOSFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.