Abstract

For a metallic surface (Au) and highly doped (N+) and (P+) semiconductor surfaces (GaInAs) and for localised zones (2 × 2 μm) we have measured using an electrostatic force microscope the variation of the gradient of the electrostatic force by the signal (phase of the oscillating movement of the metallised tip) as a function of the sample-tip potential difference (− 4 V to + 4 V). In both cases the signal shows a quadratic variation with the sample-tip potential difference. The variation of the signal is of the order of magnitude of the theoretical predictions obtained by modelling the shape of the tip by a truncated cone + a portion of a sphere. Using the parabolic curve that fits the experimental results, the value of the contact potential difference, corresponding to a zero value of the electrostatic force gradient, can be determined with an accuracy of 50 mV. The contact potential difference, measured between the metallised tip and the metal (Au), taken as a reference, allows the work function of the metal tip to be determined (5.25 eV). The values of the contact potential difference for the GaInAs (N+) and (P+) surfaces can be explained by the Fermi level pinning due to surface charges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.