Abstract

One of the main problems in high-speed-train transportation systems is related to the current collection quality, that can dramatically decrease because of oscillations of the pantograph-catenary system. This problem has been addressed by means of active pantographs. In this paper we present some results about the possible implementation of variable structure control (VSC) techniques on a wire actuated symmetric pantograph. Such an actuator was suggested in the literature as a viable solution to building an active pantograph by modifying a passive pantograph currently used by Italian Railways. The use of VSC with sliding modes was considered in order to cope with the system uncertainties due to the overhead suspended catenary. Recent results about the frequency-based analysis of VSC systems featuring second-order sliding modes are exploited to avoid the performance-destroying effect of the resonant wire actuator and to get a continuous control force without using observers. We show by simulations that the contact force results are very close to the desired set-point also in the presence of measurement noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.