Abstract

Based on the self-consistent electron dynamic transport theory for multi-probe mesoscopic systems, we calculate the distribution of internal potential, charge density, and ac conductance of a two-probe mesoscopic conductor with wide trapezoid reservoirs, and study the contact effect. The results show that including the contact effect can make a significant difference to the frequency-dependent electron transport properties. In the nonzero frequency case, the internal potential and the charge density are complex with extremely small imaginary parts. Importantly, the imaginary part of the charge density gives rise to a real ac conductance (admittance), which corresponds to the charge-relaxation resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.