Abstract
The purpose of this work is to present a new adelic method for realising Langlands’ functoriality principle in the case of unramified automorphic induction from GL 1 to GL 2 on function fields. A kernel of functoriality is built on the product of the adelic groups GL 1 and GL 2 . It is some kind of “family” local version of the construction for global Whittaker models, which is classically used in the “converse theorems” of Weil and Piatetski-Shapiro. Essential use is made of the Fourier transform on adele groups and of the Poisson formula, just as in Tate’s thesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.