Abstract

We study the stochastically forced Lorenz model in the parameter zone admitting two coexisting limit cycles under the transition to chaos via period-doubling bifurcations. Noise-induced transitions between both different parts of the single attractor and two coexisting separate attractors are demonstrated. The effects of structural stabilization and noise symmetrization are discussed. We suggest a stochastic sensitivity function technique for the analysis of noise-induced transitions between two coexisting limit cycles. This approach allows us to construct the dispersion ellipses of random trajectories for any Poincare sections. Possibilities of our descriptive-geometric method for a detailed analysis of noise-induced transitions between two periodic attractors of Lorenz model are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.