Abstract

In this work, Z-scheme heterostructure were constructed over the visible light response g-C3N4 photocatalysts by loading Porous silicon (PSi) to enhance the photocatalytic H2 evolution performance. The synthesized Z-scheme g-C3N4/PSi composites with a PSi loading content of 2.50 wt% achieves the highest photocatalytic H2 evolution rate at 870.4 µmol h−1 g−1, which is about 2 times as high as the pure g-C3N4 with H2 evolution rate of 427.2 µmol h−1 g−1. Various techniques including XRD, SEM, TEM, FTIR, XPS, UPS, PL and electrochemical method were employed to demonstrate the successful construction of g-C3N4/PSi composites and to investigate the origin of the enhanced potocatalytic activity. The formed heterostructure between g-C3N4 nanosheets and PSi were verified to be the dominant reason for the enhancement of photocatalytic activity, resulting from the separation promotion of photogenerated charge carriers in a direct Z-scheme mechanism. This study presented a promising Z-scheme g-C3N4/PSi photocatalysts with promising H2 evolution performance, which might drive the progress of solar energy conversion technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.