Abstract

Flexible electronics are developing rapidly due to promising applications in displays, sensors, and energy conversion fields. For biodegradable, lightweight, and flexible thin film electronics to be explored, O-(2,3-Dihydroxypropyl) cellulose (DHPC) was synthesized by homogeneous etherification of cellulose in 7 wt % NaOH/12 wt % urea aqueous solution without extra catalyst. DHPC exhibited a high level of transparency, outstanding ductility, and good adhesiveness but poor mechanical properties. Thus, stiff tunicate cellulose nanocrystals (TCNCs) were introduced to construct tough nanocomposite papers. The reinforcement of nanocomposite papers was well predicted by a percolating model, indicating the formation of the network of TCNCs. On the basis of the excellent interfacial compatibility between TCNCs and DHPC, supported by atomic force microscope mapping, the nanocomposite papers exhibited smooth surface, high transparency, as well as satisfactory mechanical properties, which were suitable for the const...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.