Abstract
This paper is composed of three self-consistent sections that can be read independently of each other. In Sec. 1, we define and analyze the low Mach number problem through a linear analysis of a perturbed linear wave equation. Then, we show how to modify Godunov-type schemes applied to the linear wave equation to make this scheme accurate at any Mach number. This allows to define an all Mach correction and to propose a linear all Mach Godunov scheme for the linear wave equation. In Sec. 2, we apply the all Mach correction proposed in Sec. 1 to the case of the nonlinear barotropic Euler system when the Godunov-type scheme is a Roe scheme. A linear stability result is proposed and a formal asymptotic analysis justifies the construction in this nonlinear case by showing how this construction is related with the linear analysis of Sec. 1. At last, we apply in Sec. 3 the all Mach correction proposed in Sec. 1 in the case of the full Euler compressible system. Numerous numerical results proposed in Secs. 1–3 justify the theoretical results and show that the obtained all Mach Godunov-type schemes are both accurate and stable for all Mach numbers. We also underline that the proposed approach can be applied to other schemes and allows to justify other existing all Mach schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.