Abstract

ABSTRACT 1. MicroRNAs (miRNAs) play key roles in regulating lipid metabolism, adipogenesis and fat deposition in chicken. To date, there are only a few miRNAs that have been confirmed to be involved in chicken adipogenesis. The detailed mechanisms by which miRNAs regulate chicken adipogenesis remain largely unknown. 2. To identify candidate miRNAs involved in chicken preadipocyte differentiation and explore potential mechanisms behind their functions, the following study analysed and identified miRNA and mRNA expression levels in undifferentiated and differentiated preadipocytes. Hub miRNA-mRNA interactions were identified, and the degree of connectivity of DE miRNAs in the network was established. 3. A total of 145 DE miRNAs and 660 DE mRNAs were identified between undifferentiated and differentiated preadipocytes. An miRNA-mRNA network was constructed, including 29 DE miRNAs and 155 DE mRNAs, forming 470 miRNA-mRNA interactions. Functional enrichment analysis showed that DE mRNAs in the network were significantly enriched in 712 biological processes and 13 KEGG pathways. Based on the connectivity degree, five DE miRNAs with higher degrees miR-195-x, gga-miR-200a-3p, gga-miR-135a-5p, novel-m0067-5p and novel-m0270-5p were identified as hub miRNAs. Fifty-eight DE mRNAs interacted with these five hub miRNAs and formed 70 miRNA-mRNA interactions. 4. This study constructed a miRNA-mRNA network associated with chicken preadipocyte differentiation and identified five hub miRNAs in the network. The findings identified a number of chicken adipogenic miRNAs and laid the foundation for elucidating the miRNA-mediated regulatory mechanism in chicken adipogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.