Abstract

Existing lunar DEMs obtained based on laser altimetry or photogrammetric image analysis are characterised by high large-scale accuracies while their lateral resolution is strongly limited by noise or interpolation artifacts. In contrast, image-based photometric surface reconstruction approaches reveal small-scale surface detail but become inaccurate on large spatial scales. The framework proposed in this study therefore combines photometric image information of high lateral resolution and DEM data of comparably low lateral resolution in order to obtain DEMs of high lateral resolution which are also accurate on large spatial scales. Our first approach combines an extended photoclinometry scheme and a shape from shading based method. A novel variational surface reconstruction method further increases the lateral resolution of the DEM such that it reaches that of the underlying images. We employ the Hapke IMSA and AMSA reflectance models with two different formulations of the single-particle scattering function, such that the single-scattering albedo of the surface particles and optionally the asymmetry parameter of the single-particle scattering function can be estimated pixel-wise. As our DEM construction methods require co-registered images, an illumination-independent image registration scheme is developed. An evaluation of our framework based on synthetic image data yields an average elevation accuracy of the constructed DEMs of better than 20m as long as the correct reflectance model is assumed. When comparing our DEMs to LOLA single track data, absolute elevation accuracies around 30m are obtained for test regions that cover an elevation range of several thousands of metres. The proposed illumination-independent image registration method yields subpixel accuracy even in the presence of 3D perspective distortions. The pixel-wise reflectance parameters estimated simultaneously with the DEM reflect compositional contrasts between different surface units. Specifically, the detected variations of the parameter of the single-particle scattering function indicate small-scale variations of the regolith particle size, possibly as a result of differences in soil maturity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.