Abstract

Multi-metallic phosphides offer the possibility to combine the strategies of surface reconstruction, electronic interaction and mechanistic pathway tuning to achieve high electrocatalytic oxygen evolution activity. Here, iron-doped nickel cobalt phosphide nanoparticles (FexCoyNi2-x-yP) with the crystalline NiCoP phase are for the first time synthesized by the solvothermal phosphidization method via the reaction between metal–organic frameworks and white phosphorus. When used to electrochemically catalyze oxygen evolution reaction (OER), the Fe0.4Co0.8Ni0.8P supported by nickel foam requires only 248 mV overpotential to achieve 10 mA cm−2 current densities, and is robust towards the long-term OER in 1 M KOH. The higher number of electrochemically active sites can account for the good OER activity, along with the improved intrinsic activity which is caused by the electron interaction that optimizes the adsorption energy of hydroxyl intermediates, and that increases the acidity of high-valent metal centers. The OER mechanistic pathway involves both adsorbate and lattice oxygen. Surface conversion is observed after OER in alkaline solution, and metal phosphide layer transforms to metal oxides and (oxy)hydroxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.