Abstract
Due to excellent flexibility and dispersibility, 2D graphene oxide (GO) is regarded as one of the prospective materials for preparing self-supporting electrode material. Nevertheless, the self-stacking characteristic of GO significantly restricts the ion transmission and accessibility in GO-based electrodes, especially in the direction perpendicular to the electrode surface. Herein, a novel composite film was fabricated from GO and 3D porous carbon (PC) through vacuum filtration combined with thermal reduction strategy. The combination of GO and PC not only avoids the self-stacking of GO, but also exposes more active sites for ions in the inner. A massive released nitrogen and oxygen-containing gases during the thermal reduction endows the reduced graphene oxide (RGO) with abundant porous and CC, which contributes to the energy storage in the direction perpendicular to the electrode surface. Besides, the high specific surface area of the prepared composite film is favorable for the storage and release of charge on the electrode surface. Benefiting from the above characteristics, the electrode assembled by the as-prepared film exhibits ultrahigh areal/volumetric specific capacitance in supercapacitor and ZIHCs (Zinc ion hybrid capacitors). This work provides a promising approach for the development of advanced self-supported electrode materials with desirable electrochemical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.