Abstract
We present theorems which provide the existence of invariant whiskered tori in finite-dimensional exact symplectic maps and flows. The method is based on the study of a functional equation expressing that there is an invariant torus. We show that, given an approximate solution of the invariance equation which satisfies some non-degeneracy conditions, there is a true solution nearby. We call this an a posteriori approach. The proof of the main theorems is based on an iterative method to solve the functional equation. The theorems do not assume that the system is close to integrable nor that it is written in action-angle variables (hence we can deal in a unified way with primary and secondary tori). It also does not assume that the hyperbolic bundles are trivial and much less that the hyperbolic motion can be reduced to constant linear map. The a posteriori formulation allows us to justify approximate solutions produced by many non-rigorous methods (e.g. formal series expansions, numerical methods). The iterative method is not based on transformation theory, but rather on successive corrections. This makes it possible to adapt the method almost verbatim to several infinite-dimensional situations, which we will discuss in a forthcoming paper. We also note that the method leads to fast and efficient algorithms. We plan to develop these improvements in forthcoming papers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.