Abstract

The design of high-performance and durable electrodes for the oxygen evolution reaction (OER) is crucial for pure-water-fed anion exchange membrane water electrolysis (AEMWE). In this study, an integrated electrode with vertically aligned ionomer-incorporated nickel-iron layered double hydroxide nanosheet arrays, used on one side of the liquid/gas diffusion layer, is fabricated for the OER. Transport highways in the fabricated integrated electrode, significantly improve the transport of liquid/gas, hydroxide ions, and electron in the anode, resulting in a high current density of 1900mA cm-2 at 1.90V in pure-water-fed AEMWE. Specifically, three-electrode and single-cell measurement results indicate that an anion-exchange ionomer can increase the local OH- concentration on the integrated electrodes surface and facilitate the OER for pure-water-fed AEMWE. This study highlights a new approach to fabricating and understanding electrode architecture with enhanced performance and durability for pure-water-fed AEMWE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.