Abstract
Primary hepatocytes are widely recognized for their ability to accurately represent thein vivohepatocyte phenotype. However, traditional avascular primary hepatocyte culture models are limited by inadequate mass transfer, which leads to a rapid decline in hepatocyte function and survival. To address these challenges, vascularization of hepatic spheroids is crucial for enhancing oxygen and nutrient supply, thereby enabling the construction of larger and more complex hepatic tissuesin vitro. In this study, we achieved vascularization of hepatic spheroids containing freshly isolated primary hepatocytes by incorporating fibroblasts as a source of paracrine factors to induce angiogenesis. Multicellular spheroids composed of primary hepatocytes and fibroblasts were formed in non-adhesive concave wells, and one of the spheroids was subsequently embedded in a fibrin-collagen hydrogel within a microfluidic device. Endothelial cells were then seeded onto adjacent microfluidic channels. They formed microvascular networks that extended toward and penetrated the hepatic spheroid. The vascularized hepatic spheroid closely mimicked hepatic sinusoids, with hepatocytes in close contact with microvessels. Moreover, the vascularized spheroid exhibited significantly enhanced hepatic function, specifically albumin secretion and urea synthesis. Our findings provide insights into the establishment of highly vascularized hepatic spheroidsin vitro, which is crucial for constructing scalable hepatic tissues in the context of biofabrication.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have