Abstract
NiFe2O4 has been regarded as one of the promising candidates for lithium-ion battery (LIB) anode materials due to its high theoretical specific capacity. However, the large volume expansion and pulverization of NiFe2O4 during the charge/discharge process result in severe capacity fading. Herein, heterostructured NiFe2O4-C nanorods have been successfully fabricated by recovering transition metals from simulated electroplating sludge leaching solution. The constructed NiFe2O4-C heterointerface plays a vital role in accommodating volume change, stabilizing the reaction products and providing rapid electron and Li+ ion transportation ability, resulting in a high and stable Li+ accommodation performance. The fabricated NiFe2O4-C nanorods demonstrate a high specific capacity (889.9 mA h g-1 at 100 mA g-1), impressive rate capability (861.5, 704.5, 651.4, 579.6 and 502.1 mA h g-1 at 0.2, 0.6, 1.0, 2.0 and 5.0 A g-1) and cycling stability (650.2 mA h g-1 at 2 A g-1 after 500 cycles). This work exemplifies a facile and effective approach for the fabrication of high performance LIB electrode materials by recycling metals from electroplating sludge in an application-oriented manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.