Abstract

We propose a data-driven reverse engineering approach to isolate the components of a gene interaction and regulatory network. We apply this method to the construction of a network for bovine skeletal muscle. Key nodes in the network include muscle-specific genes and transcription factors. muscle-specific genes are identified from data mining the USA National Cancer Institute, Cancer Genome Anatomy Project database, while transcription factors are predicted by accurate function annotation. A total of 5 microarray studies spanning 78 hybridisations and 23 different experimental conditions provided raw expression data. A recently-reported analytical method based on multivariate mixed-model equations is used to compute gene co-expression measures across 624 genes. The resulting network included 102 genes (of which 40 were muscle-specific genes and 7 were transcription factors) that clustered in 7 distinct modules with clear biological interpretation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.