Abstract

Several microbes are polyploid, meaning they contain several copies of their chromosome. Cyanobacteria, while holding great potential as photosynthetic cell factories of various products, are found among them. In these clades the diversity of genetic elements that serve within the basic molecular toolbox is often limiting. To assist mining for the latter, we present here a method for the generation of fully segregated genomic libraries, specifically designed for polyploids. We provide proof-of-principle for this method by generating a fully segregated genomic promoter library in the cyanobacterium Synechocystis sp. PCC 6803. This new tool was first analyzed through fluorescence activated cell sorting (FACS) and then a fraction was further characterized regarding promoter sequence. The location of libraries on the chromosome provides a better reflection of the behavior of its elements. Our work presents the first method for constructing fully segregated genomic libraries in polyploids, which may facilitate their usage in synthetic biology applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.