Abstract
Differential operators and integral operators are linked together by the first fundamental theorem of calculus. Based on this principle, the notion of a differential Rota-Baxter algebra was proposed by Guo and Keigher. Recently, the subject has attracted more attention since it is associated with many areas in mathematics, such as integro-differential algebras. This paper considers differential Rota-Baxter algebras in the quasi-idempotent operator context. We establish a Gröbner-Shirshov basis for free commutative quasi-idempotent differential algebras (resp. Rota-Baxter algebras, resp. differential Rota-Baxter algebras). This provides a linear basis of a free object in each of the three corresponding categories by the Composition-Diamond lemma. Communicated by P. Kolesnikov
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.