Abstract

AbstractBoron‐enriched scaffolds have demonstrated unique features and promising performance in the field of catalysis towards the activation of small gas molecules. However, there is still a lack of facile approaches capable of achieving high B doping and abundant porous channels in the targeted catalysts. Herein, construction of boron‐ and nitrogen‐enriched nanoporous π‐conjugated networks (BN‐NCNs) was achieved via a facile ionothermal polymerization procedure with hexaazatriphenylenehexacarbonitrile [HAT(CN)6] sodium borohydride as the starting materials. The as‐produced BN‐NCN scaffolds were featured by high heteroatoms doping (B up to 23 wt. % and N: up to 17 wt. %) and permanent porosity (surface area up to 759 m2 g−1 mainly contributed by micropores). With the unsaturated bonded B species acting as the active Lewis acid sites and defected N species acting as the active Lewis base sites, those BN‐NCNs delivered attractive catalytic performance towards H2 activation/dissociation in both gaseous and liquid phase, acting as efficient metal‐free heterogeneous frustrated Lewis pairs (FLPs) catalysts in hydrogenation procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.