Abstract
A metal-organic framework (MOF)-mediated adsorption strategy is first developed for improving the anti-ultraviolet (UV) properties of poly( p-phenylene benzobisoxazole) (PBO) fibers. In this work, UIO-66 was successfully anchored onto the surface of PBO fibers by one-step microwave-assisted heating method. The experimental results showed an obviously enhanced surface energy (91.1%), roughness (268.4%), interfacial shear strength (49.0%), and anti-UV properties (66.7%) compared to pristine PBO fibers. The anti-UV dye (tartrazine) was further immobilized onto the surface of PBO fibers via an adsorption strategy mediated by UIO-66. Interestingly, the PBO@tartrazine fibers demonstrated superior anti-UV performance (further up to 81.5%) compared to PBO@UIO-66 fibers. The extraordinary anti-UV properties of PBO@tartrazine fibers could be rationally ascribed to the synergistic effects of UIO-66 and tartrazine molecules. Considering the diversities and functionalities of MOFs and targeted materials, our work indicates that the MOF-mediated adsorption strategy would promisingly endow PBO fibers with other desired performance and applications such as solar-thermal transition and self-healing abilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.