Inorganic chemistry

Construction of an Artificial Light-Harvesting System with Efficient Photocatalytic Activity in an Aqueous Solution Based on a FRET-Featuring Metallacage.

Publication Date Aug 8, 2022


Over the past few decades, the design and construction of high-efficiency artificial light-harvesting systems (LHSs) involving multistep fluorescence-resonance energy transfer (FRET) processes have gradually received considerable attention within wide fields ranging from supramolecular chemistry to chemical biology and even materials science. Herein, through coordination-driven self-assembly, a novel tetragonal prismatic metallacage featuring a FRET process using tetraphenylethene (TPE) units as donors and BODIPY units as acceptors has been conveniently synthesized. Subsequently, taking advantage of supramolecular hydrophobic interactions, a promising artificial LHS involving two-step FRET processes from TPE to BODIPY and then to Nile Red (NiR) has been successfully fabricated in an aqueous solution using the FRET-featuring metallacage, NiR, and an amphiphilic polymer (mPEG-DSPE). Notably, this obtained aqueous LHS exhibits highly efficient photocatalytic activity in the dehalogenation of a bromoacetophenone derivate. This study provides a unique strategy for fabricating artificial LHSs in aqueous solutions with multistep FRET processes and further promotes the future development of mimicking the photosynthesis process.


Construction Of Artificial Light-harvesting Systems Fluorescence-resonance Energy Transfer Processes Nile Red Artificial Light-Harvesting System Efficient Photocatalytic Activity BODIPY Units Coordination-driven Self-assembly Fluorescence-resonance Energy Transfer Light-harvesting Systems Amphiphilic Polymer

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 12, 2022 to Sep 18, 2022

R DiscoverySep 19, 2022
R DiscoveryArticles Included:  5

Rainfall projections from the Coupled Model Intercomparison Project (CMIP) models are strongly tied to projected sea surface temperature (SST) spatial...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.