Abstract

Fabricating zero-dimensional/two-dimensional (0D/2D) heterojunctions is considered to be an efficient approach to boost the transfer/separation of photo-induced charges. Herein, a novel visible-light-driven 0D/2D CdZnS/SnIn4S8 heterostructures were successfully prepared by in situ growth of 0D CdZnS quantum dots on the surface of 2D SnIn4S8 nanosheets. Such unique dimensional coupling structure with large specific surface area and appropriate pore size of CdZnS/SnIn4S8 expedited the mass transfer rate of interfacial catalytic reaction. Under visible light irradiation, the as-prepared heterojunctions not only showed excellent photocatalytic oxidation activity towards the degradation of tetracycline and rhodamine B, but also exhibited outstanding performance of reducing H2O to hydrogen. The significantly enhanced photocatalytic capability could be attributed to the strong light absorption, highly effective separation and migration of charges, and abundant reactive sites, which encouraged by the uniformly and intimately contacted interface between CdZnS quantum dots and SnIn4S8 nanosheets. Moreover, the possible degradation pathway and ecological toxicity during rhodamine B degradation were also investigated and discussed in detail. This study will provide valuable information for the development of transition metal sulfide-based photocatalytic heterostructures for solving environmental pollution and energy shortage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.