Abstract

A thin 3 m diameter × 5 m, 1.5 T superconducting solenoid for the Fermilab collider detector facility (CDF solenoid) was constructed. Cool-down and excitation tests of the solenoid were carried out. The design current is 5000 A and the stored magnetic energy is 30 × 10 6 J. The solenoid utilizes the forced flow cooling method of two-phase helium and does not have a permanent inner bobbin. The material thickness of the solenoid is 0.85 radiation length in the radial direction. An aluminum-stabilized NbTi/Cu superconductor fabricated with the EFT method was used. Radially outward magnetic forces must be supported with an outer support cylinder shrink-fitted outside the coil. The helium cooling tube of 20 mm in inner diameter and about 140 m in length was welded to the outer support cylinder. The maximum excitation current was limited to 2800 A in the present tests without an iron return yoke. Thermal response of the solenoid during the cool-down and excitation tests was very steady. A series of heater quench tests was attempted by using a heater installed at the outer support cylinder. The solenoid did not quench even for a heater input of about 10 kJ. In a warm-up test the liquid helium supply was shut off. The coil stayed superconducting for about 90 min and then the entire coil became normal very uniformly. This result is consistent with the measured heat load of the solenoid of about 35 W. The results of the present tests indicate the excellent thermal stability of the solenoid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.