Abstract

Ergothioneine (ERG) is a natural antioxidant that has been widely used in the fields of food, medicine and cosmetics. Compared with traditional plant extraction and chemical synthesis approaches, microbial synthesis of ergothioneine has many advantages, such as the short production cycle and low cost, and thus has attracted intensive attention. In order to engineer an ergothioneine high-yielding Escherichia coli strain, the ergothioneine synthesis gene cluster egtABCDE from Mycobacterium smegmatis and egt1 from Schizosaccharomyces pombe were introduced into E. coli BL21(DE3) to generate a strain E1-A1 harboring the ergothioneine biosynthesis pathway. As a result, (95.58±3.2) mg/L ergothioneine was produced in flask cultures. To further increase ergothioneine yield, the relevant enzymes for biosynthesis of histidine, methionine, and cysteine, the three precursor amino acids of ergothioneine, were overexpressed. Individual overexpression of serAT410STOP and thrA resulted in an ergothioneine titer of (134.83±4.22) mg/L and (130.26±3.34) mg/L, respectively, while co-overexpression of serAT410STOP and thrA increased the production of ergothioneine to (144.97±5.40) mg/L. Eventually, by adopting a fed-batch fermentation strategy in 3 L fermenter, the optimized strain E1-A1-thrA-serA* produced 548.75 mg/L and 710.53 mg/L ergothioneine in glucose inorganic salt medium and rich medium, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.