Abstract

This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot (WDPR), uniquely characterized by an SPM (Spinning Projectile Model)-centered mobile platform. First, an SPM-centered mobile platform, featuring two redundant and another unconstrained Degree of Freedom (DOF), and its suspension support mechanism are designed together, collectively constructing a WDPR endowed with kinematic redundancy. Afterward, the kinematics of the mechanism, boundary equations for the redundant DOFs, and relevant kinematic performance indices are then proposed and formulated. The results from both prototype experiments and numerical assessments are presented. The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results, while the proposed kinematics and boundary equations are also validated. Furthermore, it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support. Finally, the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants. However, local attitude performance can be further improved by the variable values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.