Abstract

Herein, a series of face-capped (Tr2M3)4L4 (Tr = cycloheptatrienyl cationic ring; M = metal; L = organosulfur ligand) tetrahedral cages 1-3 functionalized with 12 appended crown ether moieties were designed and synthesized. The reversible binding of ammonium cations with peripheral crown ether moieties to adjust internal guest-binding was realized. Combination of a bisammonium linker and cage 3 led to the formation of a supramolecular gel SPN1 via host-guest interactions between the crown ether moieties and ammonium salts. The obtained supramolecular gel exhibited multiple-stimuli responsiveness, injectability, and excellent self-healing properties and could be further developed to a SPN1-based drug delivery system. In addition, the storage modulus of SPN1 was 20 times higher than that of the model gel without Pd-Pd bonded blocks, and SPN1 had better self-healing properties compared with the latter, demonstrating the importance of such cages in improving mechanical strength without losing the dynamic properties of the material. The cytotoxicity in vitro of the drug-loaded (doxorubicin or methotrexate) SPN1 was significantly improved compared to that of free drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.