Abstract
Marburg virus (MARV) is a zoonotic virus that can infect humans and non-human primates (NHPs) and lead to a fatal Marburg hemorrhagic fever (MHF), while there is no approved vaccine or antiviral treatment for MHF. The nucleic acid vaccine has unique advantages, including fast and simple preparation, easy to follow the virus mutation situation, and less adverse reactions. Therefore, we constructed the DNA and mRNA candidate vaccines based on codon-optimized MARV glycoprotein sequence, and evaluated the immune effect in mice through ELISA, ELISpot, and Flow cytometry. After the second booster immunization, both of the candidate vaccines induced strong humoral immune response, enhanced T cell response, and elicited neutralizing antibodies. Notably, DNA candidate vaccine induced stronger humoral immune response, while mRNA candidate vaccine elicited higher levels of IFN-γ and IL-4. In addition, transcriptome analysis revealed that the candidate vaccines activated immune response related pathways. Our study shed new light on the nucleic acid vaccines for MARV and further confirmed the potential of nucleic acid vaccine for future MHF prevention and control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.