Abstract

RNA interference technology is a powerful tool with substantially clinical prospects for carcinoma therapy, in which efficiency and specificity of delivery of dsRNA remains a critical issue. Herein, aiming at delivery of dsRNA in efficient and safe way, we constructed targeting delivery platform (CTL-PEG-FA) by grafting curdlan with trilysine through click reaction, then modifying with PEG linked folic acid. The CTL-PEG-FA vector exhibited excellent gene binding capacity to condense siRNA and dramatically reduced cytotoxicity. Increased cell uptake of CTL-PEG-FA/Bcl-2 siRNA was achieved by the synergism of folate mediated endocytosis and charge interaction, and further causing severe HepG2 cells injury through apoptosis mechanism after down-regulation of Bcl-2 protein. In vivo experiments, CTL-PEG-FA/Bcl-2 siRNA complex distinctly accumulated in tumor site and significantly inhibited the growth of tumor, while no obvious toxicity was observed. Therefore, well-performed CTL-PEG-FA with excellent biocompatibility, has the potential to be the candidate of gene therapy for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.