Abstract

Calcium β-hydroxy-β-methylbutyrate (CaHMB), a functional calcium salt, is used to maintain and improve muscle health. Here, a new hydrogel material prepared from alginate (ALG) with three M/G ratios (1:1, 2:1, and 1:2) and CaHMB (0–2 mg/mL) was investigated. CaHMB regulates the formation and properties of ALG hydrogels through chelation and hydrogen bonding. When the M/G ratio was 2:1, the anionic groups of CaHMB containing carboxyl and hydroxyl groups formed hydrogen bonds with the polysaccharide chains, hindering the capture of Ca2+ by the G-residue fragments of ALG, which in turn retarded the gelation process. The noncalcium cross-linked polysaccharide chain structure of ALG and the anionic group of CaHMB also affected the water distribution in the hydrogel, especially when M residue content ≥G residue content. Lower M/G ratios and higher CaHMB concentrations could increase the number of “egg box” crosslinking junctions of calcium alginate, and the microstructure was denser in the gel pores, resulting in a stronger gel strength and more free water bound in the gel matrix. This study provides a theoretical and methodological basis for the design of novel hydrogels by studying the crosslinking features of ALG/CaHMB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.