Abstract

Based on Time-Domain Reflectometry (TDR) technique, a new method which could reconstruct the topology of an unknown or partially unknown network is proposed in this paper. This approach, the TDR-NEW approach, allows the network to be retrieved by drawing its interconnections and estimating the lengths of branches. Two complementary steps are addressed. In the first step the direct problem is modeled using RLCG circuit parameters. Then the Finite Difference Time Domain (FDTD) method conjugated with the ABCD matrix method is used to model the signal propagation in a branched network. This model, the FDTD-ABCD, provides a simple and accurate method to simulate Time Domain Reflectometry responses. In the second step the newton-based optimization method is combined with the wire propagation model to solve the inverse problem and to deduce physical informations about the network from the reflectometry response. Numerical and experimental results pointing out the performance of the TDR-NEW method in reconstructing the topology of branched networks are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.