Abstract

Given a set P of n point sites in the plane, the city Voronoi diagram subdivides the plane into the Voronoi regions of the sites, with respect to the city metric. This metric is induced by quickest paths according to the Manhattan metric and an accelerating transportation network that consists of c non-intersecting axis-parallel line segments. We describe an algorithm that constructs the city Voronoi diagram (including quickest path information) using O((c+n) polylog (c+n)) time and storage by means of a wavefront expansion. For [Formula: see text] our algorithm is faster than an algorithm by Aichholzer et al., which takes O(n log n + c2 log c) time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.