Abstract

The archaeal enzyme geranylgeranyl reductase (GGR) catalyzes hydrogenation of carbon-carbon double bonds to produce the saturated alkyl chains of the organism's unusual isoprenoid-derived cell membrane. Enzymatic reduction of isoprenoid double bonds is of considerable interest both to natural products researchers and to synthetic biologists interested in the microbial production of isoprenoid drug or biofuel molecules. Here we present crystal structures of GGR from Sulfolobus acidocaldarius, including the structure of GGR bound to geranylgeranyl pyrophosphate (GGPP). The structures are presented alongside activity data that depict the sequential reduction of GGPP to H6GGPP via the intermediates H2GGPP and H4GGPP. We then modified the enzyme to generate sequence variants that display increased rates of H6GGPP production or are able to halt the extent of reduction at H2GGPP and H4GGPP. Crystal structures of these variants not only reveal the structural bases for their altered activities; they also shed light onto the catalytic mechanism employed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.