Abstract

High energy and high risk have always restricted the application of materials in the military and civilian fields. To achieve this goal, researchers have studied the structural characteristics and structure-activity relationship of biomass polyphenol material to obtain core-shell biomass polyphenol composite energetic materials through molecular and structural design. The interface structure has a significant impact on the safety performance and thermal stability of energetic materials. The unique advantages of natural biomass polyphenol chemistry (tannic acid and tea polyphenols) include the structural design and performance control of energetic materials. This paper provides a review of the preparation of core-shell biomass polyphenol energetic materials, which involve the use of polyphenols as the shell layer, surface modification layer, and intermediate layer to enhance intermolecular interactions. This approach aims to enhance the thermal stability and reduce the sensitivity. Furthermore, the paper offers suggestions for potential future research directions based on the findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.